Abstract

Linagliptin has protective effects on the retinal neurovascular unit but, in proliferative retinopathy, dipeptidyl peptidase 4 (DPP-4) inhibition could be detrimental. The aim of this study was to assess the effect of linagliptin on ischaemia-induced neovascularisation of the retina. C57BL/6J and glucagon-like peptide 1 (GLP-1) receptor (Glp1r)-/- mice were subjected to a model of oxygen-induced retinopathy (OIR). Both strains were subcutaneously treated with linagliptin from postnatal days 12 to 16. Non-injected OIR and non-exposed mice served as controls. Capillary proliferations and systemic levels of active GLP-1 were quantified. The effects of linagliptin on vascular endothelial growth factor (VEGF)-induced downstream signalling were assessed in human umbilical vein endothelial cells (HUVECs) using western blot for retinal phosphorylated extracellular signal-regulated kinase (ERK)1/2 and retinal gene expression analyses. Linagliptin treatment led to an increase in active GLP-1 and a decreased number of neovascular nuclei in OIR mice vs controls (-30%, p < 0.05). As the reduction in neovascularisation was similar in both C57BL/6J and Glp1r-/- mice, the anti-angiogenic effects of linagliptin were independent of GLP-1R status. The expression of Vegf (also known as Vegfa) and Hif1a was increased in C57BL/6J OIR mice upon linagliptin treatment (three- vs 1.5-fold, p < 0.05, p < 0.01, respectively). In HUVECs, linagliptin inhibited VEGF-induced increases in mitogen-activated protein kinase (MAPK)/ERK (-67%, p < 0.001) and MAPK/c-Jun N-terminal kinase (JNK) (-13%, p < 0.05) pathway activities. In the retinas of C57BL/6J mice, p-ERK1/2 levels were significantly reduced upon linagliptin treatment (-47%, p < 0.05). Systemic treatment with linagliptin demonstrated GLP-1R-independent anti-angiogenic effects mediated by an inhibition of VEGF receptor downstream signalling. The specific effects of linagliptin on diabetic retinopathy are of potential benefit for individuals with diabetes, independent of metabolic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.