Abstract

The SARS-CoV-2 coronavirus is the cause of the COVID-19 pandemic. Entry of the virus into host cells, most destructively lung cells, requires two host cell surface proteins, ACE2 and TMPRSS2, downregulation of which is thus a potential therapeutic approach for COVID-19. Both of these cell surface proteins are steroid regulated: TMPRSS2 is a well-characterised androgen-regulated target in prostate cancer. Analysis of sequencing data shows co-expression of the androgen receptor (AR) and TMPRSS2 in key human lung cell types that are targeted by SARS- CoV-2. We show that treatment with antiandrogens such as enzalutamide (a well-tolerated drug widely used in advanced prostate cancer) significantly reduces TMPRSS2 levels in human lung cells and in vivo in mouse lung. We demonstrate that AR binding in the region of the TMPRSS2 gene differs between lung and prostate, identifying distinct regulatory regions. Together, the data and evidence presented supports clinical trials to assess the efficacy of antiandrogens as a treatment option for COVID-19.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call