Abstract

Donepezil is a potent acetylcholinesterase inhibitor that also interacts with the sigma1 receptor, an intracellular neuromodulatory protein. In the present study, we analyzed the antiamnesic and neuroprotective activities of donepezil in a mouse hypoxia model induced by repetitive CO exposure, comparing donepezil's pharmacological profile with other cholinesterase inhibitors tacrine, rivastigmine, and galanthamine, and the reference sigma1 agonist igmesine. CO exposure induced, after 7 days, hippocampal neurodegeneration, analyzed by Cresyl violet staining, and behavioral alterations, measured using spontaneous alternation and passive avoidance responses. When injected 20 min before the behavioral tests, i.e., 7 to 8 days after CO, all drugs showed antiamnesic properties. Preadministration of the sigma1 receptor antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine (BD1047) blocked only the igmesine and donepezil effects. The neuroprotective activity of the drugs was tested by injection 20 min before the first CO exposure (preinsult protection) or by injection 1 h after the last CO exposure (postinsult protection). All drugs alleviated the hypoxia-induced neurodegeneration and behavioral impairments when injected before CO exposure. Preadministration of BD1047 blocked both the igmesine and donepezil effects. However, when injected after CO exposure, only igmesine and donepezil induced effective neuroprotection, and the morphological and behavioral effects were BD1047-sensitive. These results showed that donepezil is a potent antiamnesic and neuroprotective compound against the neurodegeneration induced by excitotoxic insult, and its pharmacological actions as both an acetylcholinesterase inhibitor and sigma1 receptor agonist contribute to its marked efficacy. In particular, the drug is a more potent postinsult protecting agent compared with more selective cholinesterase inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.