Abstract
BackgroundGreen tea modulates neuropathic pain. Reactive oxygen species (ROS) are suggested as a key molecule in the underlying mechanism of neuropathic pain in the spinal cord. We examined the effect of epigallocatechin-3-gallate (EGCG), the major catechin in green tea, in neuropathic pain and clarified the involvement of ROS on the activity of EGCG.MethodsNeuropathic pain was induced in male Sprague-Dawley rats by spinal nerve ligation (SNL). A polyethylene tube was intrathecally located. Nociceptive degree was estimated by a von Frey filament and expressed as a paw withdrawal threshold (PWT). To determine the role of ROS on the effect of EGCG, a free radical donor (tert-BuOOH) was pretreated before administration of EGCG. ROS activity was assayed by xanthine oxidase (XO) and malondialdehyde (MDA).ResultsSNL decreased the PWT compared to sham rats. The decrease remained during the entire observation period. Intrathecal EGCG increased the PWT at the SNL site. Intrathecal tert-BuOOH significantly decreased the effect of EGCG. The levels of both XO and MDA in the spinal cord were increased in SNL rats compared to sham. Intrathecal EGCG decreased the level of XO and MDA.ConclusionsEGCG may reduce neuropathic pain by SNL due to the suppression of ROS in the spinal cord.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.