Abstract
Conformance checking techniques asses the suitability of a process model in representing an underlying process, observed through a collection of real executions. These techniques suffer from the well-known state space explosion problem, hence handling process models exhibiting large or even infinite state spaces remains a challenge. One important metric in conformance checking is to asses the precision of the model with respect to the observed executions, i.e., characterize the ability of the model to produce behavior unrelated to the one observed. By avoiding the computation of the full state space of a model, current techniques only provide estimations of the precision metric, which in some situations tend to be very optimistic, thus hiding real problems a process model may have. In this paper we present the notion of anti-alignment as a concept to help unveiling traces in the model that may deviate significantly from the observed behavior. Using anti-alignments, current estimations can be improved, e.g., in precision checking. We show how to express the problem of finding anti-alignments as the satisfiability of a Boolean formula, and provide a tool which can deal with large models efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.