Abstract

Typhoons are a serious threat to transmission towers and lines in coastal areas. The anti-wind performance of a transmission tower needs to be reinforced and optimized to avoid tower collapse. Here, an improved real-time wind-field mathematical model and a tower-line coupled simulation model were established to reproduce the wind field distribution, mechanical vibration, and interaction between the wind field and tower. The damage prediction of the transmission tower was analyzed. Furthermore, an actual scaled tower-line model was built, which was used to measure the acceleration and displacement responses in the anti-wind experiments. The research results show that the improved model is feasible and correct based on the verification of Typhoon Mujigae. The tower’s vibration response is mainly characterized by low frequencies, whereas the lines indicate a high frequency response. The transmission line has a remarkable impact on tower vibrations in high turbulence. A flow direction angle of 50° and a long span are dangerous conditions for transmission systems in coastal regions. The acceleration and displacement responses of the main bars show opposite trends to that of the auxiliary cross-bars. The contribution of this article is the possibility of tower collapse prediction and prevention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.