Abstract

Metformin (MeT) is an FDA-approved drug with a myriad of health benefits. Besides being used as an anti-diabetic drug, MeT is also effective against various cancers, liver-, cardiovascular-, and renal diseases. This study was undertaken to examine its unique potential as an anti-virulence drug against an opportunistic bacterial pathogen, Pseudomonas aeruginosa. Due to the menace of multidrug resistance in pathogenic microorganisms, many novel or repurposed drugs with anti-virulence prospects are emerging as next-generation therapies with the aim to overshadow the application of existing antimicrobial regimens. The quorum sensing (QS) mechanisms of P. aeruginosa are an attractive drug target for attenuating bacterial virulence. In this context, the anti-QS potential of MeT was scrutinized using biosensor assays. MeT was comprehensively evaluated for its effects on different motility phenotypes, virulence factor production (phenotypic and genotypic expression) along with biofilm development in P. aeruginosa in vitro. At sub-lethal concentrations, MeT displayed prolific quorum quenching (QQ) ability and remarkably inhibited AHL biosynthesis in P. aeruginosa. Moreover, MeT (1/8 MIC) effectively downregulated the expression levels of various QS- and virulence genes in P. aeruginosa, which coincided with a notable reduction in the levels of alginate, hemolysin, pyocyanin, pyochelin, elastase, and protease production. In silico analysis through molecular docking also predicted strong associations between MeT and QS receptors of P. aeruginosa. MeT also compromised the motility phenotypes and successfully abrogated biofilm formation by inhibiting EPS production in P. aeruginosa. Hence, MeT may be repurposed as an anti-virulence drug against P. aeruginosa in clinical settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call