Abstract
Staphylococcus aureus is a highly prevalent and aggressive human pathogen causing a wide range of infections. This study aimed to explore the potential of Patuletin, a rare natural flavone, as an anti-virulence agent against S. aureus. At a sub-inhibitory concentration (1/4 MIC), Patuletin notably reduced biofilm formation by 27 % and 23 %, and decreased staphyloxanthin production by 53 % and 46 % in Staphylococcus aureus isolate SA25923 and clinical isolate SA1, respectively. In order to gain a more comprehensive understanding of the in vitro findings, several in silico analyses were conducted. Initially, a 3D-flexible alignment study demonstrated a favorable structural similarity between Patuletin and B70, the co-crystallized ligand of CrtM, an enzyme that plays a pivotal role in the biosynthesis of staphyloxanthin. Molecular docking highlighted the strong binding of Patuletin to the active site of CrtM, with a high affinity of −20.95 kcal/mol. Subsequent 200 ns molecular dynamics simulations, along with MM-GBSA, ProLIF, PLIP, and PCAT analyses, affirmed the stability of the Patuletin-CrtM complex, revealing no significant changes in CrtM's structure upon binding. Key amino acids crucial for binding were also identified. Collectively, this study showcased the effective inhibition of CrtM activity by Patuletin in silico and its attenuation of key virulence factors in vitro, including biofilm formation and staphyloxanthin production. These findings hint at Patuletin's potential as a valuable therapeutic agent, especially in combination with antibiotics, to counter antibiotic-resistant Staphylococcus aureus infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.