Abstract

Extreme vibration often occurs on TBM main system during the tunneling process. This paper established the mathematical model for TBM main system considering the impact load, time-varying internal incentive and the complex coupling relationship between each vibration degree of freedom. The dynamic model was modified by the multi-point vibration measured data. The calculation error of the system response of the main support frame’s main vibration direction was within 10%. And it was found that the overturning vibration and axial vibration of the system were the main forms of vibration of the system. It was determined that the low-frequency vibration of 15–20 Hz was a coupled vibration of system’s first to fourth mode vibration mode. Based on the vibration characteristics of TBM main system, this paper designed a tuned mass vibration absorption structure (TMVAS) that can adapt to the multi degree of freedom (MDOF) coupling vibration of TBM main system during the actual tunneling process. To minimize system vibration, the optimal design parameters of the system was determined. The maximum amplitude of the axial and horizontal overturning vibration of the support frame was reduced by 26.7 % and 13 %, and the maximum amplitude of the cutterhead’s axial vibration was reduced by 23.2 %.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call