Abstract

Immunotherapy requiring an efficient T lymphocyte response is initiated by antigen delivery to antigen-presenting cells. Several studies have assessed the efficiency of various antigen loading procedures, including microbial vectors. Here a live strain of Pseudomonas aeruginosa was engineered to translocate a recombinant antigenic protein into mammalian cells via the type III secretion system, a bacterial device translocating effector proteins into host cells. Optimization of the vector included virulence attenuation and determination of the N-terminal sequence allowing translocation of fused antigens into cells. In vitro delivery of an ovalbumin fragment by the bacterial vector into dendritic cells induced the activation of ovalbumin-specific CD8+ T lymphocytes. Mice injected with the ovalbumin-delivering vector developed ovalbumin-specific CD8+ T lymphocytes and were resistant to a subsequent challenge with an ovalbumin-expressing melanoma. Moreover, in a curative assay, injection of the vaccine vector 5 and 12 days after tumor implantation led to a complete cure in five of six animals. These results highlight the utility of type III secretion system-based vectors for anti-tumor immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.