Abstract

Agonists for TLR9 and stimulator of IFN genes (STING) offer therapeutic applications as both anti-tumor agents and vaccine adjuvants, though their clinical applications are limited; the clinically available TLR9 agonist is a weak IFN inducer and STING agonists induce undesired type 2 immunity. Yet, combining TLR9 and STING agonists overcame these limitations by synergistically inducing innate and adaptive IFNγ to become an advantageous type 1 adjuvant, suppressing type 2 immunity, in addition to exerting robust anti-tumor activities when used as a monotherapeutic agent for cancer immunotherapy. Here, we sought to decipher the immunological mechanisms behind the synergism mediated by TLR9 and STING agonists and found that their potent anti-tumor immunity in a Pan02 peritoneal dissemination model of pancreatic cancer was achieved only when agonists for TLR9 and STING were administered locally, and was via mechanisms involving CD4 and CD8 T cells as well as the co-operative action of IL-12 and type I IFNs. Rechallenge studies of long-term cancer survivors suggested that the elicitation of Pan02-specific memory responses provides protection against the secondary tumor challenge. Mechanistically, we found that TLR9 and STING agonists synergistically induce IL-12 and type I IFN production in murine APCs. The synergistic effect of the TLR9 and STING agonists on IL-12p40 was at protein, mRNA and promoter activation levels, and transcriptional regulation was mediated by a 200 bp region situated 983 bp upstream of the IL-12p40 transcription initiation site. Such intracellular transcriptional synergy may hold a key in successful cancer immunotherapy and provide further insights into dual agonism of innate immune sensors during host homeostasis and diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call