Abstract

Programmed cell death receptor ligand 1 (PD-L1)/PD-1 signaling has been exploited to design inhibitors that deliver promising clinical outcome albeit with limited efficacy. Herein, we prepare graphene oxide (GO)-PEI-PEG with low cytotoxicity and long stability and GO-PEI-PEG delivers PD-L1 siRNAs to hepatocellular carcinoma (HCC) cells by the endocytosis-lysosome pathway. The functional GO-PEI-PEG/PD-L1 siRNAs decrease PD-L1 and PD-1 abundance, increase pro-inflammation cytokine IFN-γ and TNF-α release, and improve the proliferation activity of Jurkat T cells. Since GO-PEI-PEG targets the mouse liver effectively, the intrahepatic tumors in C57BL/6 mice are treated with GO-PEI-PEG/Pd-l1 siRNAs via the tail vein, resulting in shrinkage of the HCC tumors and boosting the anti-tumor efficacy in combination with oral sorafenib. A single treatment improves the total CD3+ and cytotoxic CD8+ T cell infiltration in the HCC tumor tissues and even spleen and upregulates the expression of Perforin, Gzmb, Ifng, Il-1b and Tnfa in the tumors after the combined treatment. Both the single and combined treatments enhance reactive oxygen species (ROS) accumulation, and improved HCC ferroptosis. The results suggest that GO-PEI-PEG delivered PD-L1 siRNAs combined with oral sorafenib can activate the adaptive immunity and tumor ferroptosis and reveal an effective therapy to treat advanced HCC patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call