Abstract

AimsIn this study, we synthesized a 10-fluorine-substitution derivative of CPT (Camptothecin) YCJ100 and evaluated its antitumor activity and systemic toxicity. Materials and methodsDetermination of in vitro antitumor activity and mechanism of YCJ100 by the MTT assay, Molecular docking, EdU staining, Cell cycle and apoptosis determination, Western blot analysis and Topoisomerase I activity assay. The antitumor effects of YCJ100 were evaluated in primary HCC (hepatocellular carcinoma), ICC (intrahepatic cholangiocarcinoma) mouse models, and pancreatic cancer xenograft models. Key findingsYCJ100 showed superior cytotoxic activity compared to Topotecan in SW480, SW1990, Hep3B, HepG2, A549, A2780, HeLa, and QBC cells. YCJ100 blocked the cell cycle in the G2/M phase, inhibited cell proliferation and induced apoptosis in HepG2 and SW1990 cells. Mechanistically, YCJ100 inhibited topoisomerase I activity in both a cell-free system and a cellular system, similar to the mechanism of Topotecan. YCJ100 showed significant antitumor activity and was more potent than Topotecan in primary HCC and ICC mouse models, as well as a xenograft mouse model. Additionally, YCJ100 showed only minor toxicity to the mouse hematopoietic system, liver, and kidney. These findings indicate that YCJ100 has high antitumor activity and low systemic toxicity. SignificanceOur findings demonstrate that YCJ100, as a Topoisomerase I inhibitor, has in vitro and in vitro antitumor activity. This study provides a new lead compound worthy of further preclinical evaluation and potential clinical development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call