Abstract

We evaluated a novel physiological 3-D bioelectrospray model of the tuberculosis (TB) granuloma to test the activity of a known anti-TB drug, clofazimine; three carbapenems with potential activity, including one currently used in therapy; and nitazoxanide, an anti-parasitic compound with possible TB activity (all chosen as conventional drug susceptibility was problematical). PBMCs collected from healthy donors were isolated and infected with M. tuberculosis H37Rv lux (i.e., luciferase). Microspheres were generated with the infected cells; the anti-microbial compounds were added and bacterial luminescence was monitored for at least 21 days. Clavulanate was added to each carbapenem to inhibit beta-lactamases. M. tuberculosis (MTB) killing efficacy was dose dependent. Clofazimine was the most effective drug inhibiting MTB growth at 2 mg/L with good killing activity at both concentrations tested. It was the only drug that killed bacteria at the lowest concentration tested. Carbapenems showed modest initial activity that was lost at around day 10 of incubation and clavulanate did not increase killing activity. Of the carbapenems tested, tebipenem was the most efficient in killing MTB, albeit at a high concentration. Nitazoxanide was effective only at concentrations not achievable with current dosing (although this might partly have been an artefact related to extensive protein binding).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.