Abstract

Quadrotors play a crucial role in the national economy. The control technology for quadrotor-slung load transportation systems has become a research hotspot. However, the underactuated load’s swing poses significant challenges to the stability of the system. In this paper, we propose a Lyapunov-based control strategy, to ensure the stability of the quadrotor-slung load transportation system while satisfying the constraints of the load’s swing angles. Firstly, a position controller without swing angle constraints is proposed, to ensure the stability of the system. Then, a barrier Lyapunov function based on the load’s swing angle constraints is constructed, and an anti-swing controller is designed to guarantee the states’ asymptotic stability. Finally, a PD controller is designed, to drive the actual angles to the virtual ones, which are extracted from the position controller. The effectiveness of the control method is verified by comparing it to the results of the LQR algorithm. The proposed control method not only guarantees the payload’s swing angle constraints but also reduces energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call