Abstract

A new fuzzy controller for anti-swing and position control of an overhead traveling crane is proposed based on the Single Input Rule Modules (SIRMs) dynamically connected fuzzy inference model. The trolley position and velocity, the rope swing angle and angular velocity are selected as the input items, and the trolley acceleration as the output item. Each input item is given with a SIRM and a dynamic importance degree. The control system is proved to be asymptotically stable to the destination. The controller is robust to different rope lengths and has generalization ability for different initial positions. Control simulation results show that by using the fuzzy controller, the crane is smoothly driven to the destination in short time with small swing angle and almost no overshoot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call