Abstract

Conductive hydrogel endures as an ideal candidate for flexible electronic devices. However, conventional conductive hydrogels cannot incorporate superior sensitivity under low deformation, biocompatibility and underwater sensing into one system, which widely obstructs their applications in an aqueous environment. Herein, we designed a supramolecular conductive poly(vinyl alcohol) (PVA) and tannic acid (TA) based PVA/TA hydrogel. Due to the effective hydrogen bonding between PVA and TA, the hydrogel possesses some unique properties, including anti-swelling, stretching, self-healing and shape-memory. The PVA/TA supramolecular hydrogel demonstrates an excellent electrical performance where the conductivity and gauge factor (GF) are obtained at 5.5 × 10-4 S/cm and 1.3 in dry and 5.0 × 10-4 S/cm and 1.2 in wet conditions, respectively. The multifunctional hydrogel manifests excellent mechanical properties, where the maximum tensile strength of the hydrogels is 700 kPa at an elongation of 4700 %. Additionally, the hydrogel possesses excellent shape-memory and self-healable properties. Moreover, the hydrogel depicts outstanding biocompatibility, anti-swellable properties and exerts long-term stability underwater to detect human motions. Based on excellent anti-swelling and stability, high electrical conductivity and extraordinary stretching capability, the hydrogels may consider as promising candidates for applications in amphibious motion sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.