Abstract

Load swaying is one of the most frequently occurring problems at production sites. The purpose of this work is to create a control system for the movement of an overhead crane with an anti-sway function. The Particle Swarm Optimization method has been used to find the controller coefficients. The crane movement with the anti-sway function should be implemented using a PLC (programmable logic controller) and have a high speed of operation. The frequency converter controls the speed of the drive that moves the crane. The main advantage of the system is its simplicity and low cost combined with the low swaying of the load. The oscillation amplitude with an angular speed regulator is two to three times less in comparison with the control system without the angular speed regulator. The presence of an angular speed regulator minimizes the impact of the load weight and the rope length. The efficiency of the simulator program for calculating angular speed has been tested and confirmed. Verification of the created mathematical model of the crane with experimental installation has been made.Article HighlightsAn efficient and low-cost anti-sway system for overhead cranes has been developed. The efficiency of the system was tested experimentally, the dependencies of the influence of factors on the sway angle were obtained. The selection of the regulator coefficients is implemented using the particle swarm optimization method coded in C++, which provides high-speed performance and the ability to integrate the algorithm into the PLC of the overhead crane control system.

Highlights

  • In recent times, the requirements for production efficiency have been increasing, including the efficiency of lifting operations

  • The selection of the regulator coefficients is implemented using the particle swarm optimization method coded in C++, which provides high-speed performance and the ability to integrate the algorithm into the PLC of the overhead crane control system

  • Anti-sway control methods for overhead cranes are considered in numerous books and articles

Read more

Summary

Introduction

The requirements for production efficiency have been increasing, including the efficiency of lifting operations. Load swaying is one of the most frequently occurring problems at production sites. This often entails heightened requirements for the qualifications of the crane operator. Anti-sway control methods for overhead cranes are considered in numerous books and articles. St.Petersburg Polytechnic University, St.Petersburg, Russian Federation 195251.

Objectives
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call