Abstract

Strychnine poisoning induces seizures that result in loss of control of airway muscles, leading to asphyxiation and subsequent death. Current treatment options are limited, requiring hands-on medical care and isolation to low-stimulus environments. Anticonvulsants and muscle relaxants have shown limited success in cases of severe toxicity. Furthermore, nonfatal strychnine poisoning is likely to result in long-term muscular and cognitive damage. Due to its potency, accessibility, and lack of effective antidotes, strychnine poses a unique threat for mass casualty incidents. As a first step toward developing an anti-strychnine immunotherapy to reduce or prevent strychnine-induced seizures, a strychnine vaccine was synthesized using subunit keyhole limpet hemocyanin. Mice were vaccinated with the strychnine immunoconjugate and then given a 0.75 mg/kg IP challenge of strychnine and observed for seizures for 30 min. Vaccination reduced strychnine-induced events, and serum strychnine levels were increased while brain strychnine levels were decreased in vaccinated animals compared to the control. These data demonstrate that strychnine-specific antibodies can block the seizure-inducing effects of strychnine and could be used to develop a therapeutic for strychnine poisoning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call