Abstract

Photosensitized peroxidation of membrane lipids has been implicated in skin pathologies such as phototoxicity and premature aging. We have previously reported that syriacusin compounds isolated from Hibiscus Syriacus inhibited lipid peroxidation. Here, we investigated whether syriacusins could be effective inhibitor to skin aging using ultraviolet-irradiated human dermal fibroblast cells (HDFCs). Syriacusins A, B, and C inhibit the activity of human neutrophil elastase (HNE), a serine protease to degrade extracellular matrix (ECM) proteins including elastin, with <TEX>$IC_{50}s$</TEX> of 8.0, 5.2, and <TEX>$6.1\;{\mu}M$</TEX>, respectively. No changes in cell viability were detected by syriacusins A and B in UV-B (<TEX>$10\;mJ/cm^2$</TEX>) irradiated HDFCs. Matrix metallo-proteinase (MMP)-1 expression in HDFCs was increased by UV-B irradiation. MMP-1 expression in UV-B irradiated HDFCs was decreased by <TEX>$10\;{\mu}M$</TEX> and <TEX>$20\;{\mu}M$</TEX> syriacusin A to 50% and 20% of untreated control, respectively. Syriacusin B treated with <TEX>$20\;{\mu}M$</TEX> reduced MMP-1 expression in UV-B irradiated HDFCs to 60% of untreated control. Syriacusin A also inhibited MMP-2 expression accompanying the increase of type-I pro-collagen in UV-B irradiated HDFCs. These results demonstrate that syriacusin A could be a more effective compound to inhibit skin aging caused by UV irradiation. It suggests that syriacusins A and B might be developed as possible agents to treat or prevent skin aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.