Abstract

We develop the concept and the calculus of anti-self-dual (ASD) Lagrangians and their derived vector fields which seem inherent to many partial differential equations and evolutionary systems. They are natural extensions of gradients of convex functions – hence of self-adjoint positive operators – which usually drive dissipative systems, but also provide representations for the superposition of such gradients with skew-symmetric operators which normally generate unitary flows. They yield variational formulations and resolutions for large classes of non-potential boundary value problems and initial-value parabolic equations. Solutions are minima of newly devised energy functionals, however, and just like the self (and anti-self) dual equations of quantum field theory (e.g. Yang–Mills) the equations associated to such minima are not derived from the fact they are critical points of the functional I, but because they are also zeroes of suitably derived Lagrangians. The approach has many advantages: it solves variationally many equations and systems that cannot be obtained as Euler–Lagrange equations of action functionals, since they can involve non-self-adjoint or other non-potential operators; it also associates variational principles to variational inequalities, and to various dissipative initial-value first order parabolic problems. These equations can therefore be analyzed with the full range of methods – computational or not – that are available for variational settings. Most remarkable are the permanence properties that ASD Lagrangians possess making their calculus relatively manageable and their domain of applications quite broad.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call