Abstract
The Vainshtein mechanism is known as an efficient way of screening the fifth force around a matter source in modified gravity. This has been verified mainly in highly symmetric matter configurations. To study how the Vainshtein mechanism works in a less symmetric setup, we numerically solve the scalar field equation around a disk with a hole at its center in the cubic Galileon theory. We find, surprisingly, that the Galileon force is enhanced, rather than suppressed, in the vicinity of the hole. This anti-screening effect is larger for a thinner, less massive disk with a smaller hole. At this stage, our setup is only of academic interest and its astrophysical consequences are unclear, but this result implies that the Vainshtein screening mechanism around less symmetric matter configurations are quite nontrivial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.