Abstract

Context: Interleukin-17 (IL-17) is a pro-inflammatory cytokine that plays a crucial role in immunity and inflammation. Aims: To evaluate the potential therapeutic effects of two compounds, magnosalicine and neotatarine, derived from the ethanolic extract of Acorus calamus L. rhizome, against IL-17. Methods: Utilizing LC/MS analysis combining molecular docking simulations, drug likeness, ADME and toxicity analysis. This study explored the molecular interactions and binding affinities of identified compounds from A. calamus with crucial residues of IL-17, including Tyr62, Pro63, Ile66, Gln94, Ile96, Leu97, and Leu99. Results: The results revealed that magnosalicine and neotatarine exhibited remarkable binding affinities of -10.16 kcal/mol and -9.53 kcal/mol, respectively, indicating their strong interactions with IL-17. Moreover, both compounds displayed superior binding energies compared to other extract constituents. Interestingly, this study highlighted that all terpenoid compounds from the A. calamus rhizome extract were capable of interacting with these key residues of IL-17, resembling the interactions observed with the natural ligand (RMK) and methotrexate. Meanwhile, the analysis results revealed a safer ADME and toxicity profile for neotatarine compared to magnolalicine. Conclusions: This research unveils the promising potential of neotatarine as candidates for further exploration in therapeutic interventions targeting IL-17-related pathways. These findings shed light on the molecular insights of Acorus calamus L. compounds, providing valuable information for developing novel treatments for IL-17-associated disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.