Abstract

Retinal injuries that affect the photoreceptors and/or the retinal pigment epithelium (RPE) may result in the leakage of retinal proteins into the systemic circulation. This study was designed to determine whether an immune response is elicited after an acute retinal injury resulting in circulating anti-retinal antibodies in the serum. Fifty laser burns of different grades (minimally visible lesion [MVL], grade II [GII], or grade III [GIII] lesions) were created in the retinas of Dutch Belted rabbits. The degree of laser burns was confirmed by fundus imaging and histology. Serum samples were collected from the animals 3 months after the retinal injury. Candidate autoantigens were identified by two-dimensional (2-D) Western blots of rabbit retinal lysate probed with sera from either control or laser-treated animals. Candidate autoantigens were further characterized by immunostaining to confirm their retinal localization. Seven and 11 protein spots were selected from the MVL and GII laser-treated samples, respectively, for autoantigen identification. No protein spots were detected in the GIII laser-treated samples. Four candidate autoantigens were common to both MVL and GII lesions: dihydropyrimidinase-related protein 2, fructose-bisphosphate aldolase C, chaperonin-containing T-complex polypeptide 1 subunit zeta, and pyruvate kinase isozyme. Laser-induced retinal injuries resulted in circulating anti-retinal antibodies that were detectable 3 months after the injury. The response appeared to vary with the severity of the laser retinal damage. The identification of the candidate antigens in this study suggest that this approach may permit future development of new diagnostic methods for retinal injuries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.