Abstract
Quorum sensing enables cell-cell communication in bacteria and regulates biofilm formation. Biofilm production promotes pathogenicity of Escherichia coli and causes infections. However, antibiotic resistance limits conventional treatment efficacy against biofilm infections. Quorum quenching offers an alternative by disrupting quorum sensing signals. Allicin, extracted from garlic, possesses antimicrobial and anti-quorum sensing properties. This study employed molecular docking and dynamics simulations to investigate allicin’s interaction with the E. coli quorum sensing system, specifically targeting the cytoplasmic SidA receptor protein. SidA binds to N-acyl-homoserine lactone ligands and regulates quorum sensing in E. coli. The crystal structure of SidA was obtained from the PDB. Molecular docking revealed that allicin competitively binds to the ligand-binding pocket of SidA. Simulations analyzed the effects of allicin binding on SidA stability and affinity for N-acyl-homoserine lactones over 200 ns. Parameters like RMSD, RMSF, and hydrogen bonding indicated SidA was more stable when bound to allicin compared to unbound. Binding free energies suggested allicin reduced SidA's affinity for native ligands. Therefore, allicin binding to SidA alters its conformation and inhibits interaction with N-acyl-homoserine lactones, disrupting quorum sensing signaling and biofilm production in E. coli. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.