Abstract
BackgroundIncreasing studies implicate cancer stem cells (CSCs) as the source of resistance and relapse following conventional cytotoxic therapies. Few studies have examined the response of CSCs to targeted therapies, such as tyrosine kinase inhibitors (TKIs). We hypothesized that TKIs would have differential effects on CSC populations depending on their mechanism of action (anti-proliferative vs. anti-angiogenic).MethodsWe exposed human sarcoma cell lines to sorafenib, regorafenib, and pazopanib and assessed cell viability and expression of CSC markers (ALDH, CD24, CD44, and CD133). We evaluated survival and CSC phenotype in mice harboring sarcoma metastases after TKI therapy. We exposed dissociated primary sarcoma tumors to sorafenib, regorafenib, and pazopanib, and we used tissue microarray (TMA) and primary sarcoma samples to evaluate the frequency and intensity of CSC markers after neoadjuvant therapy with sorafenib and pazopanib. Parametric and non-parametric statistical analyses were performed as appropriate.ResultsAfter functionally validating the CSC phenotype of ALDHbright sarcoma cells, we observed that sorafenib and regorafenib were cytotoxic to sarcoma cell lines (P < 0.05), with a corresponding 1.4 – 2.8 fold increase in ALDHbright cells from baseline (P < 0.05). In contrast, we observed negligible effects on viability and CSC sub-populations with pazopanib. At low doses, there was progressive CSC enrichment in vitro after longer term exposure to sorafenib although the anti-proliferative effects were attenuated. In vivo, sorafenib improved median survival by 11 days (P < 0.05), but enriched ALDHbright cells 2.5 – 2.8 fold (P < 0.05). Analysis of primary human sarcoma samples revealed direct cytotoxicity following exposure to sorafenib and regorafenib with a corresponding increase in ALDHbright cells (P < 0.05). Again, negligible effects from pazopanib were observed. TMA analysis of archived specimens from sarcoma patients treated with sorafenib demonstrated significant enrichment for ALDHbright cells in the post-treatment resection specimen (P < 0.05), whereas clinical specimens obtained longitudinally from a patient treated with pazopanib showed no enrichment for ALDHbright cells (P > 0.05).ConclusionsAnti-proliferative TKIs appear to enrich for sarcoma CSCs while anti-angiogenic TKIs do not. The rational selection of targeted therapies for sarcoma patients may benefit from an awareness of the differential impact of TKIs on CSC populations.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2407-14-756) contains supplementary material, which is available to authorized users.
Highlights
Increasing studies implicate cancer stem cells (CSCs) as the source of resistance and relapse following conventional cytotoxic therapies
Investigators have observed the expression of CSC markers to vary depending on experimental conditions and tumor type, aldehyde dehydrogenase (ALDH) has been consistently identified as a CSC marker in breast cancer and prostate cancer, and levels of ALDHbright cells have been observed to predict worse oncologic outcome in numerous human cancers, including soft tissue sarcoma (STS) [7,13,14,15,16,17,18]
We observed CD24, CD44, and CD133 to be variably expressed in our sarcoma cell lines, and we found that these markers did not reliably correlate with the CSC phenotype (Additional file 1: Figure S1D)
Summary
Increasing studies implicate cancer stem cells (CSCs) as the source of resistance and relapse following conventional cytotoxic therapies. The cancer stem cell (CSC) hypothesis postulates that CSCs, referred to as tumor-initiating cells, represent a small proportion of malignant cells in the overall tumor bulk [1,2] It is these typically quiescent cells which are resistant to conventional cytotoxic cancer therapies and which are able to repopulate tumors even after apparent complete response to chemotherapy and/or radiotherapy (RT) [3,4,5]. Genetic lineage tracing studies have provided provocative evidence for the existence of CSCs in a hierarchy of asymmetric cell division and tumor repopulation in models of squamous cell carcinoma, intestinal adenomas, and GBM. For example, identified an ALDHbright subpopulation of Ewing’s sarcoma cells which was able to stimulate long term colony outgrowth, form tumor xenografts in immunodeficient mice, and resist chemotherapy treatment [19]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.