Abstract
In this paper, we study the linear systems $|-mK_X|$ on Fano varieties $X$ with klt singularities. In a given dimension $d$, we prove $|-mK_X|$ is non-empty and contains an element with good singularities for some natural number $m$ depending only on $d$; if in addition $X$ is $\epsilon$-lc for some $\epsilon>0$, then we show that we can choose $m$ depending only on $d$ and $\epsilon$ so that $|-mK_X|$ defines a birational map. Further, we prove Shokurov's conjecture on boundedness of complements, and show that certain classes of Fano varieties form bounded families.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.