Abstract

The application of nano-based materials in intelligent, innovative drug delivery systems (SDDS) is developing rapidly to treat infectious diseases like malaria. In the present study, magnetite (Fe3O4) nanocomposite coated with heparin (Hep) was designed to deliver quinine (Q) for anti-plasmodial purposes. The MTT assay, Artemia salina lethality, and hemolysis test were adopted to evaluate the nanocomposite's cytotoxicity, biotoxicity, and biocompatibility. The cumulative drug release profile revealed that this Q-loaded nanocomposite could accelerate the release of its payload in an acidic condition (pH 5.4), which mimics the digestive vacuole (DV) of the parasite. The in vivo anti-plasmodial activity indicated that the Q-loaded nanocomposite exhibited great anti-plasmodial activity than free quinine. The experimental results showed that the presence of heparin on the surface of the nanocomposite could significantly reduce cytotoxicity, biotoxicity, and acute toxicity. Besides, SEM, TEM, and HRTEM images indicated that nonstabilized Fe3O4 particles have significant aggregation, but the presence of heparin can play a role as a stabilizing agent. These biocompatible, nontoxic nanocomposites offer great potential for anti-plasmodial drug delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call