Abstract

This paper considers several finite moving cracks in a non-homogeneous material. The shear modulus and mass density of the plane are considered for a class of functional forms for which equilibrium equation has analytical solutions. The distributed dislocation technique is used to carry out stress analysis in a non-homogeneous plane containing moving cracks under anti-plane loading. The solution of a moving screw dislocation is obtained in a non-homogeneous plane by means of Fourier transform method. The stress components reveal the familiar Cauchy singularity at the location of dislocation. The solution is employed to derive integral equations for a plane weakened by moving cracks. Finally several examples are solved to show the effects of the material non-homogeneity and speed of cracks on the stress intensity factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call