Abstract
Conditioned media from various sources comprise numerous growth factors and cytokines and are known to promote the regeneration of damaged tissues. Among these, natural killer cell conditioned medium (NK-CdM) has been shown to stimulate collagen synthesis and the migration of fibroblasts during the wound healing process. With a long-term aim of developing a treatment for skin photoaging, the ability of NK-CdM to prevent ultraviolet-B (UV-B) damage was assessed in neonatal human dermal fibroblasts (NHDFs) and an in vitro reconstructed skin model. The factors present in NK-CdM were profiled using an antibody array analysis. Protein and mRNA levels in UV-B exposed NHDFs treated with NK-CdM were measured by western blotting and quantitative reverse transcription-PCR, respectively. The total antioxidant capacity of NK-CdM was determined to assess its ability to suppress reactive oxygen species. The anti-photoaging effect of NK-CdM was also assessed in a 3D reconstituted human full skin model. NK-CdM induced proliferation of UV-B-treated NHDFs, increased procollagen expression, and decreased matrix metalloproteinase (MMP)-1 expression. NK-CdM also exhibited a potent antioxidant activity as measured by the total antioxidant capacity. NK-CdM inhibited UV-B-induced collagen degradation by inactivating MAPK signaling. NK-CdM also elicited potential anti-wrinkle effects by inhibiting the UV-B-induced increase in MMP-1 expression levels in a 3D reconstituted human full skin model. Taken together, the suppression of both UV-B-induced MMP-1 expression and JNK activation by NK-CdM suggests NK-CdM as a possible candidate anti-skin aging agent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.