Abstract

Bredemeyera floribunda roots are popularly used to treat snakebites in the semiarid region of Northeast Brazil, and previous studies indicate the anti-ophidian actions of triterpenoid saponins found in its roots. To assess B. floribunda root extract (BFRE) activity against the effects of Bothrops jararacussu venom (BjuV), antiphospholipasic, antiproteolytic, antihemorrhagic, antinecrotic, and anti-edematogenic activities were investigated in mice. Phytochemical analysis revealed the presence of saponins, flavonoids, and sugars, with rutin and saccharose being the major constituents of BFRE. Acute toxicity was determined and BFRE was nontoxic to mice. Phospholipase A2 and proteolytic activities induced by BjuV were inhibited in vitro by BFRE at all concentrations tested herein. BFRE (150 mg/kg) inhibited paw edema induced by BjuV (50 µg/animal), reducing total edema calculated by area under the curve, but carrageenan-induced paw edema was unchanged. Hemorrhagic and necrotizing actions of BjuV (50 µg/animal) were considerably decreased by BFRE treatment. Thus, BFRE blocked the toxic actions of B. jararacussu venom despite having no anti-inflammatory activity, which points to a direct inhibition of venom’s toxins, as demonstrated in the in vitro assays. The larger amounts of rutin found in BFRE may play a role in this inhibition, since 3′,4′-OH flavonoids are known inhibitors of phospholipases A2.

Highlights

  • Snakebites are a neglected health problem in tropical regions of South America, Africa, Oceania, and Asia [1,2]

  • The aim of this study was to characterize the anti-ophidian activity of an ethanol extract of B. floribunda roots on the local effects induced by B. jararacussu venom both in vitro and in vivo

  • Secondary metabolites in the B. floribunda root extract (BFRE) were assessed by thin-layer chromatography (TLC) using chemical developers as described in Table S1 [13]

Read more

Summary

Introduction

Snakebites are a neglected health problem in tropical regions of South America, Africa, Oceania, and Asia [1,2]. In Brazil, the main genus of snakes responsible for envenomation is Bothrops. Among Bothrops species, B. jararacussu is responsible for up to 10% of the cases in its area of occurrence, being one of the most feared snakes of Brazil. The effects of envenomation from this genus are characterized by systemic and local effects including, edema, blisters, necrosis, bleeding, and local inflammation [3,4]. The use of plants for treating envenomation caused by snakebites is an age-old practice found in many cultures, long before commercial anti-venoms were developed [5]. Plant extracts, which have multiple biochemical constituents, are an extremely rich source of pharmacologically active compounds. Interactions of certain active compounds with toxins and lethal enzymes found in snake venom can lead to neutralization of their toxic activities [6]

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call