Abstract

Peripheral blockade of cannabinoid CB(1) receptors has been proposed as a safe and effective therapy against obesity, putatively devoid of the adverse psychiatric side effects of centrally acting CB(1) receptor antagonists. In this study we analysed the effects of LH-21, a peripherally acting neutral cannabinoid receptor antagonist with poor brain penetration, in an animal model of diet-induced obesity. To induce obesity, male Wistar rats were fed a high-fat diet (HFD; 60 kcal% fat) whereas controls received a standard diet (SD; 10 kcal% fat). Following 10 weeks of feeding, animals received a daily i.p. injection of vehicle or 3 mg·kg(-1) LH-21 for 10 days. Plasma and liver samples were used for biochemical analyses whereas visceral fat-pad samples were analysed for lipid metabolism gene expression using real-time RT-PCR. In addition, the potential of LH-21 to interact with hepatic cytochrome P450 isoforms and cardiac human Ether-à-go-go Related Gene (hERG) channels was evaluated. LH-21 reduced feeding and body weight gain in HFD-fed animals compared with the control group fed SD. In adipose tissue, this effect was associated with decreased gene expression of: (i) leptin; (ii) lipogenic enzymes, including SCD-1; (iii) CB(1) receptors; and (iv) both PPARα and PPARγ. Although there were no significant differences in plasma parameters between HFD- and SD-fed rats, LH-21 did not seem to induce hepatic, cardiac or renal toxicity. These results support the hypothesis that treatment with the peripherally neutral acting CB(1) receptor antagonist, LH-21, may promote weight loss through modulation of visceral adipose tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call