Abstract

Microglial-mediated neuroinflammation has recently been implicated as one of the important mechanisms responsible for the progression of neurodegenerative diseases. Activated microglia cells produce various neurotoxic factors that are harmful to neurons. Therefore, suppression of the inflammatory response elicited by activated microglia is considered a potential therapeutic target for neurodegenerative diseases. The cannabinoid (CB) system is widespread in the central nervous system and is very crucial for modulating a spectrum of neurophysiological functions such as pain, appetite, and cognition. In the present study, we synthesized and investigated a novel CB derivative (CD-101) for its ability to suppress lipopolysaccharide (LPS)-mediated activation of BV-2 microglial cells and subsequent release of various inflammatory mediators. CD-101 significantly inhibited the production of inflammatory markers such as nitric oxide, cyclooxygenase-2, and pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, and interleukin-6. The anti-neuroinflammatory effect of this novel cannabinoid derivative occurred by inhibiting p38MAPK phosphorylation and by decreasing nuclear translocation of p65 subunit of nuclear factor kappa-B in LPS-stimulated BV-2 microglial cells. These results suggest that the use of the cannabinoid derivative CD-101 might be a potential therapeutic target against neuroinflammatory disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.