Abstract

The 90 kD heat shock protein (Hsp90) molecular chaperone sustains multiple components of oncogenic pathways and has recently emerged as a therapeutic target that is now being clinically tested in a number of malignancies. In order to address formulation issues and to deal with possible resistance mechanisms against small molecule Hsp90 inhibitors, a range of compounds based on different molecular scaffolds are now being developed. The present study preclinically tested the effects of the novel 2-aminothienopyrimidine class Hsp90 inhibitor NVP-BEP800, which is suitable for oral formulations, on multiple myeloma cells from established cell lines and on a larger cohort (n = 40) of primary myeloma samples. The drug effectively and specifically killed the majority of primary myeloma cells in coculture with bone marrow stromal cells and reliably entailed molecular consequences of Hsp90 blockade - such as survival pathway breakdown and client protein depletion - in multiple myeloma cells from cell lines as well as from patients. Collectively, the properties of this novel drug support clinical testing in multiple myeloma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call