Abstract

Antibiotic resistant is the major concern in public health to control the infectious diseases. MRSA (Methicillin-resistant Staphylococcus aureus) is a significant concern in healthcare settings due to its resistance to many antibiotics, including methicillin and other beta-lactams. MRSA infection difficult to treat and increases the risk of complications. Here, we have tested a series of highly condensed heterocyclic derivatives of pyrrolo[1,2-a][1,4]benzodiazepines. Compounds were tested against both, Gram-positive bacteria, Staphylococcus aureus and S. epidermidis, and Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to assess the antimicrobial efficacy. Compared to Gram-negative bacteria, compounds showed much stronger antibacterial activity against Gram-positive bacteria. SM-5 [Ethyl2-(7-(4-chlorophenyl)-4-methoxy-6,7,8,13-tetrahydro-5H-benzo[e]benzo[5,6][1,4]diazepino[2,1-a]isoindol-15-yl)acetate] derivative was selected as best on the basis of higher therapeutic index among the tested compounds, showed MIC value of 7.81 µg. ml-1 against Staphylococcus strains. Molecular docking analysis between cell wall biosynthesis protein of S. aureus and SM-5 revealed that PBP2a showed the highest binding energy (-8.3 Kcal mol-1), followed by beta-lactam-inducible PBP4 (-7.7 Kcal mol-1), and lipoteichoic acid synthase (-7.5 Kcal mol-1) which is comparably higher than methicillin. Ground state energy calculations by DFT analysis revealed that compound SM-5 and SM-6, almost have equal electronegativity 0.11018 au which also satisfy the quality of the compound reactivity. Analysis of their biofilm inhibition in vitro and in silico toxicity analysis demonstrated their substantial potential to be a kind of future lead antibiotic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.