Abstract
Denosumab is an anti-bone resorptive drug consisting of complete human monoclonal antibodies that targets receptor activator of nuclear factor κB ligand (RANKL), which is responsible for osteoclast formation. The drug has been adapted for bone diseases, such as osteoporosis and bone metastasis related to cancer, but is not used for alveolar bone destruction related to periodontitis. In the present study, we aimed to clarify whether denosumab prevents bone destruction associated with lipopolysaccharide (LPS)-induced calvaria inflammation and experimental periodontitis in model mice. Denosumab does not bind to mouse RANKL, thus we used anti-mouse monoclonal RANKL antibodies. We also examined the inhibitory effects toward bone destruction of another anti-bone resorptive drug zoledronate, a nitrogen-containing bisphosphonate. Local administration of anti- RANKL antibodies into the calvaria area inhibited LPS-induced osteoclast formation and bone destruction, while zoledronate inhibited bone destruction but not osteoclast formation due to its different action mechanism. In periodontitis model mice, in which the second molars were ligated with a silk suture to induce inflammation, intraperitoneal administration of anti-RANKL antibodies significantly inhibited alveolar bone destruction and tooth root exposure. On the other hand, zoledronate only weakly repressed alveolar bone destruction and failed to inhibit root exposure. These results suggest that denosumab is a promising candidate to prevent alveolar bone destruction associated with periodontitis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.