Abstract

Single-pixel imaging (SPI), a novel computational imaging technique that has emerged in the past decades, can effectively capture the image of a static object by consecutively measuring light intensities from it. However, when SPI is applied to imaging the dynamic object, severe motion blur in the restored image tends to appear. In this Letter, a new SPI scheme is proposed to largely alleviate such a problem by leveraging a calibrated radon spectrum. Such a spectrum is obtained by translating the acquired one-dimensional projection functions (1DPFs) according to the positional relationship among the 1DPFs. Simulation and experimental results demonstrate that, without prior knowledge, our approach can effectively reduce motion blur and restore high-quality images of the fast-moving object. In addition, the proposed scheme can also be used for fast object tracking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call