Abstract

Oxygenation of alkenes is one of the most straightforward routes for the construction of carbonyl compounds. Wacker oxidation provides a broadly useful strategy to convert the mineral oil into higher value-added carbonyl chemicals. However, the conventional Wacker chemistry remains problematic, such as the poor activity for internal alkenes, the lack of anti-Markovnikov regioselectivity, and the high cost and chemical waste resulted from noble metal catalysts and stoichiometric oxidant. Here, we describe an unprecedented dehydrogenative oxygenation of β-alkyl styrenes and their derivatives with water under external-oxidant-free conditions by utilizing the synergistic effect of photocatalysis and proton-reduction catalysis that can address these challenges. This dual catalytic system possesses the single anti-Markovnikov selectivity due to the property of the visible-light-induced alkene radical cation intermediate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call