Abstract

Geldanamycin (GA), a benzoquinone ansamycin antibiotic has been shown in vitro to possess anti-plasmodial activity. Pharmacological activity of this drug is attributed to its ability to inhibit PfHSP90. The parasite growth arrest has been shown to be due to drug-induced blockage of the transition from ring to trophozoite stage. To further evaluate the consequences of this pharmacodyamic feature, the anti-malarial activity of GA analogs with enhanced drug properties in a Plasmodium-infected animal model have been evaluated for their capacity to induce clearance of the parasite. In the process, a hypothesis was subsequently tested regarding the susceptibility of the cured animals to malaria reflected in an attenuated parasite load that may be evoked by a protective immune response in the host. Six weeks old Swiss mice were infected with a lethal Plasmodium yoelii (17XL) strain. On appearance of clinical symptoms of malaria, these animals were treated with two different GA derivatives and the parasite load was monitored over 15-16 days. Drug-treated animals cured of the parasite were then re-challenged with a lethal dose of P. yoelii 17XL. Serum samples from GA cured mice that were re-challenged with P. yoelii 17XL were examined for the presence of antibodies against the parasite proteins using western blot analysis. Treatment of P. yoelii 17XL infected mice with GA derivatives showed slow recovery from clinical symptoms of the disease. Blood smears from drug treated mice indicated a dominance of ring stage parasites when compared to controls. Although, P. yoelii preferentially invades normocytes (mature rbcs), in drug-treated animals there was an increased invasion of reticulocytes. Cured animals exhibited robust protection against subsequent infection and serum samples from these animals showed antibodies against a vast majority of parasite proteins. Treatment with GA derivatives blocked the transition from ring to trophozoite stage presumably by the inhibition of HSP90 associated functions. Persistence of parasite in ring stage leads to robust humoral immune response as well as a shift in invasion specificity from normocytes to reticulocyte. It is likely that the treatment with the water-soluble GA derivative creates an attenuated state (less virulent with altered invasion specificity) that persists in the host system, allowing it to mount a robust immune response.

Highlights

  • Geldanamycin (GA), a benzoquinone ansamycin antibiotic has been shown in vitro to possess antiplasmodial activity

  • Treatment with GA derivatives blocked the transition from ring to trophozoite stage presumably by the inhibition of heat shock protein 90 (HSP90) associated functions

  • Persistence of parasite in ring stage leads to robust humoral immune response as well as a shift in invasion specificity from normocytes to reticulocyte

Read more

Summary

Introduction

Geldanamycin (GA), a benzoquinone ansamycin antibiotic has been shown in vitro to possess antiplasmodial activity. Pharmacological activity of this drug is attributed to its ability to inhibit PfHSP90. To further evaluate the consequences of this pharmacodyamic feature, the anti-malarial activity of GA analogs with enhanced drug properties in a Plasmodium-infected animal model have been evaluated for their capacity to induce clearance of the parasite. A recent WHO factsheet lists that in 2008, there were about 225 million cases of malaria and nearly 800,000 deaths [1]. These deaths are largely due to Plasmodium falciparum infection among young children from subSaharan Africa. Time tested approaches of screening compound libraries in cellular assays have yielded very promising results [13]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call