Abstract

The objective of this scientific work was to model and simulate the complex anti-Langmuir elution behavior of a bispecific monoclonal antibody (bsAb) under high loading conditions on the strong cation exchange resin POROS™ XS. The bsAb exhibited anti-Langmuirian elution behavior as a consequence of self-association expressed both in uncommon retentions and peak shapes highly atypical for antibodies. The widely applied Steric Mass Action (SMA) model was unsuitable here because it can only describe Langmuirian elution behavior and is not able to describe protein-protein interactions in the form of self-association. For this reason, a Self-Association SMA (SAS-SMA) model was applied, which was extended by two activity coefficients for the salt and protein in solution. This model is able to describe protein-protein interactions in the form of self-dimerization and thus can describe anti-Langmuir elution behavior. Linear gradient elution (LGE) experiments were carried out to obtain a broad dataset ranging from pH 4.5 to 7.3 and from 50 to 375 mmol/L Na+ for model parameter determination. High loading LGE experiments were conducted with an increasing load from 0.5 up to 75.0 mgbsAb/mLresin. Thereby, pH-dependent empirical correlations for the activity coefficient of the solute protein, for the equilibrium constant of the self-dimerization process and for the shielding factor could be set up and ultimately incorporated into the SAS-SMA model. This pH-dependent SAS-SMA model was thus able to simulate anti-Langmuir behavior over extended ranges of pH, counterion concentration, and column loading. The model was confirmed by experimental verification of simulated linear pH gradient elutions up to a load of 75.0 mgbsAb/mLresin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.