Abstract

Several lines of evidence support a fundamental role for voltage-gated sodium channels in mediating ischemic Na rise. We examined the effect of the novel anti-ischemic compound KC 12291 on veratridine-stimulated and lysophosphatidylcholine (LPC)-induced sustained sodium current (I(NAL)) mediated by sodium channels in isolated myocytes obtained from guinea-pig atria, by using the whole-cell patch-clamp technique. We also analyzed the effect of KC 12291 on veratridine- and LPC-induced contractures in isolated guinea-pig atria. Veratridine as well as LPC increased I(NAL) measured at 20 ms of a 2 s pulse evoked from -100 to -30 mV (47.5 and 12 pA/pF in the presence of 40 microM veratridine and 10 microM LPC, respectively, vs. 6.7 pA/pF under control conditions). A significant reduction by KC 12291 in the quantity of charge carried by veratridine-stimulated I(NAL) in the range of test potentials between -50 mV and +10 mV was observed and similar effects were obtained on LPC-induced I(NAL). Thus, the quantity of charge carried by LPC-induced I(NAL) over a 2 s pulse to -30 mV was reduced by 48% in the presence of 10 microM KC 12291 vs. a reduction by 50% of veratridine-stimulated I(NAL) at the same test potential. Veratridine- and LPC-induced submaximal contractures in isolated atria were significantly inhibited by KC 12291 in a concentration-dependent manner, with an IC of 0.55 microM and 0.79 microM, respectively. The data indicate that veratridine- and LPC-induced increases in diastolic tension are inhibited by KC 12291 by a mechanism that involves blockade of voltage-gated sodium channels mediating sustained sodium current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.