Abstract

Manually segmenting medical images is expertise-demanding, time-consuming and laborious. Acquiring massive high-quality labeled data from experts is often infeasible. Unfortunately, without sufficient high-quality pixel-level labels, the usual data-driven learning-based segmentation methods often struggle with deficient training. As a result, we are often forced to collect additional labeled data from multiple sources with varying label qualities. However, directly introducing additional data with low-quality noisy labels may mislead the network training and undesirably offset the efficacy provided by those high-quality labels. To address this issue, we propose a Mean-Teacher-assisted Confident Learning (MTCL) framework constructed by a teacher-student architecture and a label self-denoising process to robustly learn segmentation from a small set of high-quality labeled data and plentiful low-quality noisy labeled data. Particularly, such a synergistic framework is capable of simultaneously and robustly exploiting (i) the additional dark knowledge inside the images of low-quality labeled set via perturbation-based unsupervised consistency, and (ii) the productive information of their low-quality noisy labels via explicit label refinement. Comprehensive experiments on left atrium segmentation with simulated noisy labels and hepatic and retinal vessel segmentation with real-world noisy labels demonstrate the superior segmentation performance of our approach as well as its effectiveness on label denoising.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call