Abstract

Common medications for treating inflammatory bowel disease (IBD) have limited therapeutic efficacy and severe adverse effects. This underscores the urgent need for novel therapeutic approaches that can effectively target inflamed sites in the gastrointestinal tract upon oral administration, exerting potent therapeutic efficacy while minimizing systemic effects. Here, we report the construction and in vivo therapeutic evaluation of a library of anti-inflammatory glycocalyx-mimicking nanoparticles (designated GlyNPs) in a mouse model of IBD. The anti-inflammatory GlyNP library was created by attaching bilirubin (BR) to a library of glycopolymers composed of random combinations of the five most naturally abundant sugars. Direct in vivo screening of 31 BR-attached anti-inflammatory GlyNPs via oral administration into mice with acute colitis led to identification of a candidate GlyNP capable of targeting macrophages in the inflamed colon and effectively alleviating colitis symptoms. These findings suggest that the BR-attached GlyNP library can be used as a platform to identify anti-inflammatory nanomedicines for various inflammatory diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.