Abstract

Large DNA poxviruses encode a diverse family of secreted proteins that modulate host inflammatory and antiviral responses, in particular by inhibiting one of the key players of the mammalian immune system, the tumor necrosis factor (TNF). We investigated the effects of a recombinant variola (smallpox) virus TNF-decoy receptor (VARV-CrmB) in a murine model of contact dermatitis. Our results demonstrate that the VARV-CrmB protein significantly reduces the 2,4-dinitrochlorbenzene (DNCB)-induced migration of skin leukocytes during the sensitization phase and suppresses ear oedema during the elicitation phase of the contact reaction. Studies focusing on the bone marrow hematopoiesis in the contact dermatitis model revealed that the epicutaneous co-application of DNCB and VARV-CrmB protein normalized the DNCBinduced effects to control levels. As an effective TNF antagonist, the VARV-CrmB protein might be conceived as a beneficial candidate for further research and development of therapeutic approaches in the field of the inflammatory skin diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.