Abstract

Diet and nutritional factors have emerged as possible interventions for inflammatory bowel diseases (IBD), which are characterised by chronic uncontrolled inflammation of the intestinal mucosa. Microalgal species are a promising source of n-3 PUFA and derived oxylipins, which are lipid mediators with a key role in the resolution of inflammation. The aim of the present study was to investigate the effects of an oxylipin-containing lyophilised biomass from Chlamydomonas debaryana on a recurrent 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis mice model. Moderate chronic inflammation of the colon was induced in BALB/c mice by weekly intracolonic instillations of low dose of TNBS. Administration of the lyophilised microalgal biomass started 2 weeks before colitis induction and was continued throughout colitis development. Mice were killed 48 h after the last TNBS challenge. Oral administration of the microalgal biomass reduced TNBS-induced intestinal inflammation, evidenced by an inhibition of body weight loss, an improvement in colon morphology and a decrease in pro-inflammatory cytokines TNF-α, IL-1β, IL-6 and IL-17. This product also down-regulated colonic expressions of inducible nitric oxide, cyclo-oxygenase 2 and NF-κB, as well as increased PPAR-γ. In addition, lyophilised microalgal biomass up-regulated the expressions of the antioxidant transcription factor nuclear factor E2-related factor 2 and the target gene heme oxygenase 1. This study describes for the first time the prophylactic effects of an oxylipin-containing lyophilised microalgae biomass from C. debaryana in the acute phase of a recurrent TNBS-induced colitis model in mice. These findings suggest the potential use of this microalga, or derived oxylipins, as a nutraceutical in the treatment of IBD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.