Abstract

Nuclear factor-κB (NF-κB) plays a central role in inflammatory responses, and its physiologic functions are essential for cell survival and proliferation. Currently, drugs targeting NF-κB inhibition have not yet been applied in clinical practice. We investigated the physiologic effect of a novel NF-κB inhibitory compound, 1H-pyrazolo[3,4-d]pyrimidin-4-amine derivative (INH #1), on three inflammatory animal models. The pharmacokinetics were measured by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Acute hepatitis was induced by administrating lipopolysaccharide (LPS) and D-(+)-galactosamine hydrochloride followed by the analysis of survival time and inflammatory mediators. Collagen-induced arthritis (CIA) was induced by immunization with type II collagen (CII), and serum-transfer arthritis (STA) was caused by injecting K/BxN mice serum. Clinical and histologic scores were evaluated in both arthritis models. Immune cell subset analysis, CII-induced interferon-gamma (IFN-γ) production and proliferation, and measurement of anti-CII IgG antibodies were performed in the CIA model. In the acute hepatitis model, INH #1 suppressed tumor necrosis factor-α (TNF-α) production and prevented early death in a dose-dependent manner. INH #1 significantly attenuated arthritis scores and joint inflammation in both arthritis models. Additionally, in the CIA model, dendritic cells (DCs) in the regional lymph nodes were decreased in the treated mice and antigen-induced IFN-γ production and cell proliferation in splenocytes were inhibited, whereas the titers of anti-CII IgG antibodies were comparable regardless of the treatment. Here we revealed that INH #1 exerted anti-inflammatory effects in vivo via inhibition of inflammatory mediators and suppression of cellular immune responses. This compound could be a novel candidate for inhibition of NF-κB in certain inflammatory diseases. SIGNIFICANCE STATEMENT: A novel nuclear factor-κB (NF-κB) inhibitory compound, 1H-pyrazolo[3,4-d]pyrimidin-4-amine derivative (INH #1), which retains physiologically essential NF-κB bioactivity, suppressed inflammation in three different mouse models: the acute hepatitis model, the collagen-induced arthritis model, and the K/BxN serum-transfer arthritis model. These results suggest that this compound could be a novel and potent anti-inflammatory agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.