Abstract

Inflammation is involved in various diseases; search for safe treatments is warranted. Anti-inflammatory effects of ethanol extract of Myrathius arboreus (EEMa) were studied in carrageenan-induced model, formaldehyde sub-acute-induced model, and in 48 h lipopolysaccharide-induced air pouch model of inflammation. EEMa membrane-stabilizing activities and anti-oxidant capacity were determined in vitro. In the carrageenan model EEMa (125, 250, or 500 mg/kg), indomethacin (5 mg/kg), or vehicle 3 mL/kg was administered orally in rats (n=5). After 1 h, 0.1 mL of 1% carrageenan was injected into the right hind paw of rats. Change in edema sizes was measured for 3 h with plethysmometer. One-tenth milliliter (0.1 mL) of 2.5% formaldehyde was injected into the rat paw on the first day and the third day to induce sub-acute inflammation; changes in the edema sizes were determined, and percentages of inhibitions were calculated. Anti-inflammatory effects of EEMa were further examined in lipopolysaccharide (LPS)-induced air-pouch based on leukocytes count, volume of exudates, levels of malondialdehyde, glutathione, superoxide dismutase, nitric oxides, and tumor necrosis factor released into the inflammatory fluids. EEMa-free radicals scavenging activities were studied in DPPH and reducing power tests. Membrane-stabilizing activities of EEMa were evaluated in the red blood cell lysis induced by thermal and hypotonic solution. EEMa (250, 500 mg/kg) produced significant (p<0.001; p<0.05) inhibition of inflammation when compared with vehicle. Also, EEMa (250, 500, or 1000 μg/mL) significantly stabilized membrane and produced free radical scavenging activities. M. arboreus possesses anti-inflammatory and the anti-oxidant properties that might benefit translational medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call