Abstract

BackgroundVaccinium oldhamii (V. oldhamii) has been reported to exert a variety of the pharmacological properties such as anti-oxidant activity, anti-cancer activity, and inhibitory activity of α-amylase and acetylcholinesterase. However, the anti-inflammatory activity of V. oldhamii has not been studied. In this study, we aimed to investigate anti-inflammatory activity of the stem extracts from V. oldhamii, and to elucidate the potential mechanisms in LPS-stimulated RAW264.7 cells.MethodsCell viability was evaluated by MTT assay. The determination of NO and PGE2 production was performed using Griess reagent and Prostaglandin E2 ELISA Kit, respectively. The change of mRNA or protein level was evaluated by RT-PCR and Western blot.ResultsAmong VOS, VOL and VOF, the inhibitory effect of NO and PGE2 production induced by LPS was highest in VOS treatment. Thus, VOS was selected for the further study. VOS dose-dependently blocked LPS-induced NO and PGE2 production by inhibiting iNOS and COX-2 expression, respectively. VOS inhibited the expression of pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. In addition, VOS suppressed TRAP activity and attenuated the expression of the osteoclast-specific genes such as NFATc1, c-FOS, TRAP, MMP-9, cathepsin K, CA2, OSCAR and ATPv06d2. VOS inhibited LPS-induced NF-κB signaling activation through blocking IκB-α degradation and p65 nuclear accumulation. VOS inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. Furthermore, VOS inhibited ATF2 phosphorylation and blocked ATF2 nuclear accumulation.ConclusionsThese results indicate that VOS may exert anti-inflammatory activity by inhibiting NF-κB and MAPK/ATF2 signaling. From these findings, VOS has potential to be a candidate for the development of chemopreventive or therapeutic agents for the inflammatory diseases.

Highlights

  • Vaccinium oldhamii (V. oldhamii) has been reported to exert a variety of the pharmacological properties such as anti-oxidant activity, anti-cancer activity, and inhibitory activity of α-amylase and acetylcholinesterase

  • Materials Dulbecco’s Modified Eagle medium (DMEM)/F-12 1:1 Modified medium (DMEM/F-12) for cell culture was purchased from Lonza (Walkersville, MD, USA). 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2,2-diphenyl-1-picrylhydrazyl (DPPH), tolfenamic acid (TA), tartrate-resistant acid phosphatase (TRAP) solution and lipopolysaccharide (LPS) for inflammation induction was purchased from Sigma Aldrich

  • Stem extracts from Vaccinium oldhamii (VOS) has been reported to contain some phenolic compounds with anti-inflammatory activity such as (+)-catechin, (−)-epicatechin, proanthocyanidin A2 and cinnamtannin [17]

Read more

Summary

Introduction

Vaccinium oldhamii (V. oldhamii) has been reported to exert a variety of the pharmacological properties such as anti-oxidant activity, anti-cancer activity, and inhibitory activity of α-amylase and acetylcholinesterase. Of the various inflammatory mediators, nitric oxide (NO) contributes to anti-inflammatory activity in normal physiological conditions [6], but excessive NO production is thought to cause chronic inflammation in abnormal situation, which indicates that NO is a major molecule that plays a key role in the pathogenesis of inflammatory disorders [6]. Suppression of NO and PGE2 production through inhibition of iNOS and COX-2 expression, respectively has been thought to be important targets for the treatment of inflammatory diseases [6, 10]. The inflammatory mediators such as NO, PGE2, iNOS, COX-2 and IL-1β have been known to be closely related to the pathogenesis of osteoporosis in the human inflammatory diseases [11]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call