Abstract

Lead (Pb) is a deleterious environmental pollutant that is toxic to testes. Selenium (Se) possesses antioxidant and anti-inflammatory properties. Nucleotide-binding domain, leucine-rich-containing family, pyrin-domain containing-3 (NLRP3) inflammasome is involved in inflammatory response. However, the function of NLRP3 inflammasome in antagonistic effect of Se on inflammation caused by Pb remains unknown. The purpose of this research is to identify anti-inflammatory role of Se on testicular toxicity induced by Pb with an emphasis on oxidative stress, inflammation and NLRP3 signaling pathway in chicken. In present study, sixty seven-day-old Hyline male chickens were assigned into four groups. The feeding program consisted of a commercial diet (0.49 mg/kg Se), a Se-supplemented diet (1 mg/kg Se), a Pb-supplemented diet (0.49 mg/kg Se and 350 mg/kg Pb) and a Se-supplemented and Pb-supplemented diet (1 mg/kg Se and 350 mg/kg Pb), respectively. On the 12th week, blood was collected to measure serum testosterone level and testicular tissues were removed to determine Se and Pb concentrations, testicular function, histological structure, oxidative stress indicators and inflammation-related factors (Nuclear factor-kappaB, tumor necrosis factor-α, cyclooxygenase-2, NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain, caspase-1, interluekin (IL)-1β, IL-6, IL-18 and interferon-γ). The experimental results showed that after Pb administration, testicular injury was confirmed via histological assessment; testicular dysfunction were further indicated by decreased testosterone level and mRNA expression of steroidogenic acute regulatory protein, cytochrome P450 side-chain cleavage, 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase. Moreover, NLRP3 signaling pathway activated by Pb-caused oxidative stress was up-regulated accompanied by promotion in reactive oxygen species, nitric oxide, inducible nitric oxide synthase and malondialdehyde and reduction in antioxidants including glutathione peroxidase and glutathione s-transferase. Se administration ameliorated testicular tissue injury, testicular function, oxidative stress and inflammation. In conclusion, Se exhibited antagonistic role in Pb-induced testicular injury via enhancing antioxidant system and inhibiting inflammation in chickens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call