Abstract

The aim of this study was to investigate whether luteoloside, a flavonoid, could protect human dental pulp cells (HDPCs) against inflammation and oxidative stress induced by methylglyoxal (MGO), one of the advanced glycated end products (AGE) substances. HDPCs were stimulated with MGO and treated with luteoloside. MTT assay was used to determine cell viability. Protein expression was measured via western blotting. Reactive oxygen species (ROS) were measured with a Muse Cell Analyzer. Alkaline phosphatase activity (ALP) and Alizarin red staining were used for mineralization assay. Luteoloside down-regulated the expression of inflammatory molecules such as ICAM-1, VCAM-1, TNF-α, IL-1β, MMP-2, MMP-9, and COX-2 in MGO-induced HDPCs without showing any cytotoxicity. It attenuated ROS formation and enhanced osteogenic differentiation such as ALP activity and Alizarin red staining in MGO-induced HDPCs. Overall, luteoloside showed protective actions against inflammation and oxidative stress in HDPCs induced by MGO through its anti-inflammatory, anti-oxidative, and osteogenic activities by down-regulating p-JNK in the MAPK pathway. These results suggest that luteoloside might be a potential adjunctive therapeutic agent for treating pulpal pathological conditions in patients with diabetes mellitus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.